Using Gemini Google AI1. Prerequisites:- Create a Google Cloud Platform (GCP) account.
- Install the Google Cloud SDK.
- Configure your environment variables for GCP authentication.
2. Install Gemini:- Go to the [Gemini GitHub repository](https://github.com/google-research/gemini).
- Follow the installation instructions for your operating system.
3. Prepare Your Data:- Convert your data into the Gemini input format (TFRecord).
- See [Gemini's data preparation guide](https://github.com/google-research/gemini/blob/main/docs/data_preparation.md) for details.
4. Run Gemini:- Navigate to the Gemini directory.
- Run the following command to train a model:
```shell
python3 main.py \
--train_file=
\
--eval_file= \
--model_dir=
```
- Replace the placeholders with the appropriate paths.
5. Evaluate the Model:
- Run the following command to evaluate the model:
```shell
python3 main.py \
--eval_file= \
--model_dir= \
--eval_only=True
```
6. Use the Model for Prediction:
- Save the model as follows:
```shell
python3 main.py \
--model_dir= \
--checkpoint_path= \
--export_dir=
```
- Load the exported model and use it for prediction:
```python
import tensorflow as tf
# Load the model
predictor = tf.saved_model.load()
# Sample input data
input_data = ...
# Make prediction
predictions = predictor(input_data)
```
Additional Notes:
- Gemini supports various hyperparameter settings. Refer to the [configuration file](https://github.com/google-research/gemini/blob/main/config/model_config.py) for details.
- To use pre-trained models, download them from the [Gemini model zoo](https://github.com/google-research/gemini/blob/main/docs/model_zoo.md).